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The stability of a trailing line vortex. 
Part 1. Inviscid theory 

By MARTIN LESSEN, 
Department of Mechanical and Aerospace Sciences, 

University of Rochester, New York 14627 

PAWAN JIT SINGH 
Institute for Fundamental Studies, Department of Physics, 

University of Rochester, New York 14627 

AND FREDERICK PAILLET 
Department of Mechanical and Aerospace Sciences, 

University of Rochester, New York 14627 

(Received 14 May 1973 and in revised form 28 November 1973) 

The inviscid stability of swirling flows with mean velocity profiles similar to that 
obtained by Batchelor (1964) for a trailing vortex from an aircraft is studied with 
respect to infinitesimal non-axisymmetric disturbances. The flow is characterized 
by a swirl parameter q involving the ratio of the magnitude of the maximum swirl 
velocity to that of the maximum axial velocity. It is found that, as the swirl is 
continuously increased from zero, the disturbances die out quickly for a small 
value of q if n = 1 (n is the azimuthal wavenumber of the Fourier disturbance of 
type exp {i(ax + qb - act)}) ; but for negative values of n, the amplification rate 
increases and then decreases, falling to negative values at q slightly greater than 
1.5 for n = - 1. The maximum amplification rate increases for increasingly 
negative n up to n = - 6 (the highest mode investigated), and corresponds to 
q 2: 0.85. The applicability of these results to attempts a t  destabilizing vortices is 
briefly discussed. 

1. Introduction 
Various phenomena associated with swirling flows have been studied for at 

least a century; such flows are of increasingly great interest considering present 
concern with aircraft trailing vortices, vortical transport of momentum and 
energy in meteorology, and vortex bursting. However, as was demonstrated by 
Hoffman & Joubert (1963), the presence of a swirling component of velocity 
makes analysis by usual dimensional arguments extremely difficult. For this 
reason, few solutions t o  the equations of motion for swirling flows, either turbulent 
or laminar, have been made available for use in a generalized stability analysis. 

The study of the stability of shearing and rotating flows, treated as separate 
and distinct problems, began with the now famous work of Lord Rayleigh. Each 
of the two general problems has since been formulated in great detail for many 
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different mean velocity profiles and flow situations, and useful results obtained. 
However, attempts at superimposing the two types of flows with their funda- 
mentally different types of instability have been made only recently. Considering 
the analogy which may be drawn between density stratification and rotation, 
Howard & Gupta (1962) tried to find a stability criterion analogous to that 
involving the Richardson number developed by Miles and Howard for stratified 
flows. Uberoi, Chow & Narain (1972) studied the stability of a coaxial rotating jet 
and vortex in the approximation of long and short wavelengths. The discon- 
tinuous or non-smooth velocity profiles used in their analysis are a simple if crude 
representation of actually measured profiles. Widnall & Bliss (1971) studied the 
motion and stability of a vortex filament containing an axial flow in the limit of 
slender-body theory. Lessen, Deshpande & Hadji-Ohanes (1973) investigated the 
stability of similar profiles by computing numerically the growth rates for a large 
range of wavenumbers. 

In  the present study, the inviscid stability of a simple axisymmetric wake with 
superimposed swirling flow is investigated. Only non-axisymmetric disturbances 
are considered since the analysis of Howard & Gupta (1962) implies that the role 
of stable swirl is purely stabilizing for axisymmetric disturbances, while the wake 
alone is already stable with respect to such axisymmetric disturbances. The 
difficulty in relating the stability of the mean flow profiles assumed for this study 
to that of the vortex system trailing from the edge of a lifting surface is readily 
admitted; however, the analysis seeks to determine the fundamental way in which 
the distributions of rotation and axial shear interact to determine the stability of 
such a swirling wake. (It will appear from our results that the interaction 
mechanism described in Pedley (1969) is of probable importance.) The stability 
of the far wake region is considered in the same spirit as that in which the Bickley 
jet and other far-field similarity profiles have been used in previous stability 
studies. The similarity laws which govern the far wake region will determine the 
shape of the mean velocity profiles, while the relative intensity of the swirl and 
axial velocity defect can be controlled by external means. This means that the 
stability behaviour will be a function of this relative intensity (characterized by 
a swirl parameter q defined in the next section). The particular swirling far wake 
under study is obtained by superimposing the Lamb (1932, p. 692) profile for a 
convecting and diffusing vortex upon the ordinary axisymmetric far-wake profile. 
That such a situation is consistent with the fluid equations suitably far down- 
stream and at  high free-stream Reynolds numbers is indicated in the analysis of 
trailing line vortices by Batchelor (1964). 

2. Formulation of the problem 
Batchelor’s similarity solution for a swirling wake flow is given by 
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where 77 and W are the axial and azimuthal velocity profiles respectively, U, is 
the free axial velocity, v is the kinematic viscosity, x is the axial distance from 
some origin, C, is the constant circulation a t  large radius r,,, L is a constant 
depending on the induced drag or the initial velocity defect in the presimilarity 
stage, and &(q) = e-q{log?j + ei(q) - 0.807) + 2ei(?j) - 2ei(2q), 

where ei(7) = jTm 7 dy. 

It can be shown that the third term on the right-hand side of (2), involving Q(q),  
is much smaller than the second term, particularly at large free-flow Reynolds 
numbers Re = U,x/v characterizing the similarityregion; for the purposes of this 
study, this term is disregarded. 

The stability problem is formulated by deriving the well-known linearized 
momentum and continuity perturbation equations, and then Fourier analysing 
the velocity and the pressure perturbation. If u', v', w' are the axial, radial and 
azimuthal components of the velocity perturbation respectively and p' is the 
pressure perturbation, one can write 

(3) 

(u', d, w',p'} = {F,  iG, H ,  P} (r,) exp @(ax +n$ - act)}, (4) 

where (x and n are axial and azimuthal wavenumbers, c = c, + ic, is the complex 
phase velocity, c# is the azimuthal co-ordinate and F ,  G ,  H and P are the complex 
amplitudes of the perturbation. The above quantities have been non-dimen- 
sionalized with respect to a velocity scale Us and length scale rs, where 

c; U,X ug us = -log-+ L-  8vx v 8vx' 

rs = ( U ; / ~ V X ) * ,  ( 6 )  

which also transforms (1) and (2) to non-dimensional mean velocity profiles U 
and W as follows: 

It can be shown that translation and inversion of the axial velocity profile only 
affects the frequency and does not alter the amplification factor ci. Thus, we shall 
use U = e-"' as the mean axial velocity distribution, Figure 1 illustrates the shape 
of the axial and tangential profiles; the maximum value of W occurs at r = 1.122 
and equals 0.639q. If q'is theratio of the maximum swirl velocity to the maximum 
axial velocity, q' = 0.639q. 

The perturbation equations in terms of F ,  G, H and P are as follows: 

[nW/r+a(U-c)]F+U'G = -aP, (7) 

[n Wlr + a( U - c] G + 2WHIr  = P', (8) 

[nW/r +a( U - c ) ]  H + (W' + W / r ) G  = -nP/r,  ( 9 )  

aP+C'+G/r+nH/r = 0. (10) 
48-2 
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FIGURE 1. The axial and tangential mean velocity profiles U and W respectively. 

The boundary conditions, requiring that F and P do not depend on 4 at r = 0 and 
all the quantities be finite, are given by 

G(0) = H(0)  = 0, F(O), P(0) finite for n = 0, 

G(0) +W(O) = 0, F(0)  = P(0) = 0 for n = 

G(0)  = H ( 0 )  = P(0)  = P(0) = 0 for In1 > 1, 

G(m) = H(m) = F(m)  = P(m) = 0 for all n. 

(11) 
1, 

Equations (7)-( 10) can be reduced to  a single second-order equation and such 
a reduction, as obtained by Howard & Gupta also, yields 

yZ(XG*)’- y2+yr  X - - 2nW ’ -- 2awS(ayW*-nU’) [ ( (?+ r3 )) r2 

where 
nW r2 

y = a(U-c)+-, 8 = - 
n2 + a2r2 r 

and a prime and an asterisk denote the operators dldr and dldr + Ilr respectively. 
The following transformation of the dependent variable simplifies the equation: 

Z = yG/r. 
Equation (12) then reduces to 

r2y2(n2 + a2.r2) 2” + [(n2 - a2r2) ry2+ 2(n2+ a2r2) rvy’] Z’ 

- [y2(n2+ a2r2)2 + 2(n2 + a2r2) nry( W/r)’ - 4na2ryW 

-2aW(n2+a2r2) (a(rW)’-nU’)]Z = 0. (13) 
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This equation along with the boundary conditions Z(0)  = Z(o0) = 0 constitutes 
an eigenvalue problem. As a timewise stability problem, we shall attempt to 
determine c as an eigenvalue for given values of a and q;  the disturbances are 
amplified or damped with time depending upon whether ci > 0 or ci < 0 
respectively. ci = 0 characterizes neutral disturbances. 

3. Procedure 
Equation (13) is regularly singular near r = 0 (assuming that y(0) p 0; if this is 

not true, the equations must be handled differently). Thus, a Frobenius power- 
series solution near r = 0 can be obtained; its radius of convergence will depend 
upon the zeros of y. The roots of the indicia1 equation are + n .  U and W are 
expanded in power series in r and the coefficients of the series are numerically 
computed by programming the recursive relations. 

The asymptotic solutions valid for large r can also easily be determined. As r 
becomes large, U + 0 and W -+ q/r asymptotically. Por this potential vortex 
velocity distribution (7)-( 10) reduce to Bessel’s equation in F whose solution 
valid at large r is the modified Bessel function K,(ar). It can be shown that 
G = - F‘/a, and since 2 = rG/y the asymptotic solution for 2 is - ArKA(ar)/y, 
where a prime again denotes differentiation with respect to r only, and A is an 
arbitrary constant. The ratio Z’/Z is found to be 

2’ K: 1 2nq 
2 Kk r nqr-acr3’ 
_ -  - -+-+ 

Starting with these asymptotic values, the solution of (13) is advanced towards 
r = 0 by numerical integration and then matched to the known Frobenius series 
solution at  some fixed radius near zero. If 2, and 2; are the values of 2 and its 
derivative a t  some small radius r, obtained by numerical integration, and 2, 
and 2; are the corresponding values known from the power series, the matching 
of the solutions yields the dispersion relation 

The zeros of P for given values of a, n and q are the eigenvalues c.  
An additional difficulty is associated with the zeros of the factor y ( r )  which 

multiplies the higher derivatives in (13) and (15). This problem is related to the 
limiting process associated with infinite Reynolds numbers, and with the deriva- 
tion of the second-order inviscid equations from the sixth-order set of three- 
dimensional viscid disturbance equations. Using vector notation, the full set of 
equations may be transformed into the following set of six first-order equations: 

02 

€Zi = A!&kkZj (i,j = 1,2,3,4,5,6) ,  
k=O 

where 8 = (iRe)-t. Use of the asymptotic technique given by Wasow (1965, 
p. 190) to investigate the limit E + 0 a t  some r = rc where y(rc) = 0 but y’(rc) =k 0 
shows that the criterion developed by Lin (1955, p. 130) for the two-dimensional 
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case can be easily extended to the case considered here. That is, the solution of the 
inviscid equations is rigorously valid for amplified disturbances, while the path of 
numerical integration may be deformed according to Lin’s criterion (if the real 
part of y‘(!rc) is greater than zero, the path lies below the real axis and vice versa) 
in cases near neutral stability to avoid the appearance of large coefficients during 
the integration process. Such a singular point (usually called a ‘critical point ’) 
which is important in the stability of the non-swirling axisymmetric wake as 
investigated by Lessen & Singh (1973) is seen to occur somewhere in the flow field 
for all cases considered here. 

4. Numerical technique 
The Runge-Kutta method with Gill’s modification is used to integrate the 

perturbation equation. The integration is carried from a large r (Y 2~ 3, where the 
error in the mean velocity profile is of order to a small r ( I T / <  0.25 depending 
upon the singularities of y),  where the Frobenius solution is calculated by sum- 
ming the contributions of various terms in the series, whose coefficients are 
numerically determined. The criterion for truncating the series is that the ratio 
of the contribution of the last term to the partial sum up to that term must be 
less than a given small number. 

The sets of parameters {a, q, n, c} which satisfy the dispersion relation (15) are 
sought; a and q are given and the informed guesses for cr and e, are achieved 
through guidance from some known values at  slightly different values of a and q 
for a fixed n. The Newton-Raphson method is used to achieve convergence to an 
accurate eigenvalue from the guessed estimate. When q = 0 ,  the axial mean flow 
corresponds to that for a laminar wake, whose inviscid stability has already been 
investigated by Lessen & Singh (1973). These known eigenvalues serve as a 
reliable estimate as the swirl parameter q is slowly increased. The iteration is 
carried out until a t  least three-decimal-point accuracy is achieved, and normally 
fewer than three or four iterations are enough for this purpose. 

5. Results and conclusions 
This analysis was originally undertaken to investigate the stability of aircraft 

trailing vortices. The observed behaviour of such swirling wakes has been inter- 
preted as the effect of a highly stable swirl distribution on the normally unstable 
wake. However, the presence of the vortex introduced a distinction between 
positive and negative azimuthal wavenumbers, and the negative ( - n) modes are 
initially destabilized by the addition of swirl. This agrees with the results of 
Lessen et al. and Uberoi et al., who found that the negative ( - n) azimuthal modes 
are, in general, more unstable than the corresponding positive modes. For this 
reason, we have concentrated on the analysis of these negative modes, after 
illustrating the direct stabilization of the n = + 1 mode for small values of q. 

Figure 2 shows the variation of ci and c, with q for different a when n = 1, 
revealing that the n = 1 mode is stabilized by the addition of very small amounts 
of swirl; for this mode only, stabilization at all a occurs for a value of q lying 
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FIGURE 2. The variation of c, (broken lines) and ci (solid lines) with a for different 
values of swirl parameter q for the n = 1 mode. 

between 0.07 and 0.08 and there is a contracting range of unstable wavenumbers 
as q approaches this limiting value. 

The results for the negative azimuthal modes are very different. The initial 
superposition of a small amount of swirl leads to enhanced instability for the 
n = - I mode, and to even greater instability for the n < - 2 modes, which are 
completely stable without the swirl. The maximum growth rate (product of 
axial wavenumber and imaginary part of the phase speed) for each negative 
azimuthal mode appears to increase continuously with Inl. The corresponding 
values of a a t  which these maximum growth rates occur also increase continuously 
with In/, while the associated value of q approaches approximately 0.83. Figures 
~ ( c c ) ,  ( b )  and (c) show the values of the growth rate plotted against the axial 
wavenumber for the lowest six negative modes (for q = 0-40, 0-80 and 1-20 
respectively). The maximum growth rates calculated for those modes which were 
investigated are listed in table 1, along with the corresponding values of a and q. 
Finally, all wavelengths appear to become damped, and the flow completely 
stabilized, at  some value of q slightly greater than 1.5. 

The outstanding features of the results listed are the direct stabilization of the 
n = + 1 mode, the initial strong destabilization of the - n  modes (especially 
whose which are stable for the wake itself) and the eventual indication of complete 
stabilization for all modes at  some q > 1.5. The only other similar stability analysis 
with which to compare these results is that due to Bergman (1969) for a swirling 
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n aci CL Q 

- 1  0.1470 0.3 0.32 
- 2  0.3138 1.2 0.70 
- 3  0.3544 1.7 0.79 
- 4  0.3777 2.15 0.82 
-5  0.3912 2.6 0.83 
- 6  0,4008 3.2 0.83 

TABLE 1 

flow with somewhat similar velocity profiles. He obtained growth rates of 
approximately the same magnitude for the lowest unstable mode, but the 
instability does not disappear completely for larger values of the swirl parameter 
used. Also, Pedley (1968) has shown that the superposition of large solid-body 
rotation (itself rotationally stable) on pipe Poiseuille flow destabilizes modes that 
are found to be stable for the pipe flow alone. The results obtained here for 
moderate swirl bear such close resemblance to those obtained in Pedley’s inviscid 
analysis that the same general mechanism (as credited to McIntyre by Pedley 
1969) should be suspected, However, this case differs from the rapidly rotating 
pipe situation in the presence of a critical point, where 

y = a( U(r )  - c )  + nW(r)/r = 0. 
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Experience with less complicated two-dimensional parallel-flow problems sug- 
gests that the disturbance growth rates should be sensitive to the values of the 
mean flow quantities which occur at  this point (although Pedley has shown that 
a critical point is not necessary for the destabilization of a stable axial flow by a 
stable rotation). The general behaviour of this singular point can be inferred from 
figures 4(a )  and ( b ) ,  where the real and imaginary parts of the phase speed are 
plotted against a for various values of p and n = - 1. The significance of the 
critical point in this three-dimensional case is hard to define beyond such general 
statements, but the asymptotic nature of Pedley 's analysis makes a detailed 
comparison with his treatment equally difficult. 

Only the inviscid growth rates are calculated in this study. The trend towards 
larger wavenumbers for the - n modes suggests that viscosity (or turbulent eddy 
transport) will interfere with these modes when a becomes too large. For this 
reason the fist few - n modes may still dominate, since they reach growth rates 
nearly as large as those of higher modes but at much lower values of a. This matter 
is now being clarified through the complete viscid analysis of the same swirling 
far-wake flow profile. 

This work was partly supported by the National Science Foundation. 
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